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The kinetics of a granular planar rotator with a fixed center undergoing inelastic collisions with bath
particles is analyzed both numerically and analytically by means of the Boltzmann equation. The angular
velocity distribution evolves from quasi-Gaussian in the Brownian limit to an algebraic decay in the limit of an
infinitely light particle. In addition, we compare this model to that of a planar rotator with a free center and
discuss the prospects for experimental confirmation of these results.

DOI: 10.1103/PhysRevE.75.051307 PACS number�s�: 45.70.�n, 05.20.Dd

I. INTRODUCTION

When macroscopic particles undergo inelastic collisions,
the total kinetic energy decreases with time. If an external
source of energy, such as a vibrating bottom wall, is present,
the system may reach a stationary state. Despite similarities
with equilibrium systems, however, equilibrium statistical
mechanical concepts cannot be applied �1–3�. For instance,
there is no equipartition between different species in polydis-
perse systems �4–9�, and velocity distributions are, in gen-
eral, non-Gaussian �10–13�.

In dilute systems, most collisions involve only two par-
ticles, and consequently a theoretical description of the dy-
namics can be developed starting from the Boltzmann or
Enskog equation �2,14�. This approach has been used to
study tracer �or intruder� systems in which a single granular
particle is immersed in a bath of thermalized particles.

When a spherical tracer particle undergoes inelastic colli-
sions with the bath particles and when the collisions between
bath particles are elastic, its granular temperature is lower
than the bath temperature �6�. �When the collisions between
bath particles are sufficiently inelastic, as compared with the
tracer-bath collisions, and if the tracer particle is sufficiently
massive, the tracer temperature can exceed that of the bath
�15�.� The velocity distribution function is, however, a pure
Gaussian when the bath of particles is a Gaussian, whatever
the coefficient of restitution �6,16,17�. Deviations from the
Gaussian occur in a mixture composed of granular particles
of finite density immersed in a thermostat, providing the en-
ergy via elastic collisions when this energy is redistributed
within the granular component through inelastic encounters
�9,18,19�.

Few studies have addressed the effect of particle shape on
the properties of granular gases. In three dimensions, Huth-
mann et al. �7� showed that the rotational and translational
temperatures are different in the free cooling state of inelas-
tic hard needles. Anisotropic tracers �needle and spherocyl-
inder� in a thermalized bath also display nonequipartition
between different degrees of freedom �20,21�. Unlike the
case of a spherical tracer, here the angular velocity distribu-
tion function is not necessarily Gaussian when the bath par-
ticle distribution is Gaussian. Numerical studies showed no

significant deviation from this distribution �which justified
the use of a Gaussian ansatz in constructing an approximate
theory�. In a subsequent study �22�, however, a power law
was observed in the decay of the angular velocity of a needle
with a fixed center of mass with sufficiently small moment of
inertia.

In this paper we use a linear Boltzmann equation to ex-
amine the properties of the model over the entire parameter
space of mass ratio and coefficient of restitution. We show
that, when the tracer is much heavier than a bath particle, the
angular velocity distribution function is quasi-Gaussian �the
Brownian limit�, whereas it exhibits an algebraic decay in
the opposite limit of an infinitely light granular particle �22�.
For all intermediate cases, there is no simple scaling regime,
and deviations from Gaussian behavior are captured by ana-
lyzing the kurtosis of the distribution function. Even in the
absence of the power law decay of the angular velocity dis-
tribution, there may be significant deviations from Gaussian
behavior.

The paper is organized as follows. The model, its me-
chanical properties, and the Boltzmann equation are pre-
sented in Sec. II. The asymptotic solution of the Boltzmann
equation in the Brownian limit is presented in Sec. III. In
Sec. IV, analytical results are derived for the zero-mass limit
and for different coefficients of restitution, and intermediate
cases are considered in Sec. V. In Sec. VI we compare the
fixed rotator with one whose center is free, both within the
Gaussian approximation. Finally, the conclusion discusses
possible experimental tests of our theoretical results.

II. THE PLANAR ROTATOR

A. Definition and mechanical properties

The model consists of a two-dimensional, infinitely thin
needle of mass M, length L, and moment of inertia
I=ML2 /12, immersed in a bath of point particles, each of
mass m. The needle has a fixed center of mass, but can rotate
freely around its center. It undergoes instantaneous and in-
elastic collisions with the surrounding bath particles. The
motion of the planar rotator can be described by the angle
between a unit vector u collinear with the axis of the needle
and the x axis.
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The rate of change of the orientation u̇=�u� is equal to
the angular velocity �� �−� , +�� times a unit vector u�

perpendicular to u.
The angular velocity of the rotator changes at each binary

collision with a bath particle. The position of the point of
impact along the needle axis is denoted by �u. Obviously, a
condition for collision is �� � �L /2 �see Fig. 1�. The relative
velocity V at the point of impact is given by

V = v − �u̇ = v − ��u�, �1�

where v denotes the velocity of the bath particle.
Due to the dissipative nature of the collision, the relative

velocity changes according to the collision law

V�
* = − �V�, �2�

V�
* = V� , �3�

where 0���1 is the normal restitution coefficient, the in-
dices � and � indicate the perpendicular and parallel compo-
nents of any vector relative to the needle axis, respectively,
and postcollisional quantities are denoted with an asterisk.
When �=1, one recovers an elastic collision rule. For the
sake of simplicity, the tangential component of the velocity is
unchanged during the collision.

Since each collision conserves the total angular momen-
tum we have that

I�* + �mv�
* = I� + �mv�. �4�

By combining Eqs. �1�–�4�, the postcollisional bath par-
ticle velocity is given by

v�
* = v� −

I�1 + ��V�

I + m�2 , �5�

whereas the corresponding postcollisional angular velocity is

�* = � +
�1 + ��V�m�

I + m�2 . �6�

The inverse transformation �giving the precollisional quanti-
ties, denoted by a double asterisk� is obtained by substituting

� by �−1 and the quantities with asterisks by quantities with
double asterisks.

B. Homogeneous Boltzmann equation

At low density, one assumes that the needle influences
weakly the local density of the bath and, consequently, that
the system remains homogeneous. After a transient time �not
considered here�, the kinetics of the needle becomes station-
ary and can be described by the stationary Boltzmann equa-
tion. This expresses the invariance of the rotator angular ve-
locity distribution function F���, resulting from a balance
between collisional gain and loss terms:

�
−L/2

L/2

d�� dv�v� − ����F��**��B�v**�
�2 − F����B�v�	 ,

=0 �7�

where the precollisional velocities v** and �** are given by
the right-hand sides of Eqs. �5� and �6�, respectively, with �
replaced by �−1. �B�v� is the time-independent bath velocity
distribution.

The integration over the parallel velocity component v� in
Eq. �7� can be readily carried out since F does not depend on
this variable. This allows us to rewrite Eq. �7� as

�
−L/2

L/2

d�� dv��v��
F�w + v�

�1 + ��m�

I + m�2 	
	
B��� + v�

��m�2 − I�
I + m�2 	 − F���
B�v� + ���� = 0,

�8�

with 
B�v�=�dv��B��v � �.

III. BROWNIAN LIMIT

An exact solution of Eq. �8� cannot be obtained in gen-
eral. When the mass of the planar rotator is much larger than
the mass of the bath particle, however, one expects that the
deviation from Maxwellian behavior is weak. It turns out
�see Appendix A� that exploring the regime corresponding to
Brownian motion is equivalent to the analysis of the small �
expansion of the collision term�8�. We thus perform a pertur-
bative expansion of the integrand of Eq. �8� in terms of �.
We denote

G�v�,�,�� = 
F�w + v�

�1 + ��m�

I + m�2 	
	
B��� + v�

��m�2 − I�
I + m�2 	

− F���
B�v� + ���� �9�

with the property that G�v� ,� ,0�=0. To go further, we as-
sume in the rest of this section that the bath distribution

B�v� is Maxwellian:

�
�

λu

v

λωu⊥

0

M

m

FIG. 1. Illustration of a collision between the planar rotator and
a bath particle: u and u� are unit vectors parallel and perpendicular
to the axis of the rotator. The element of the needle at �u moves
with linear velocity ��u�.
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B�v� = 
M�v� =
 m

2�T
exp�− mv2/2T� . �10�

The first derivative of G�v� ,� ,�� with respect to � at
�=0 gives the differential equation

�1 + ��
dF���

d�
+ 2F���

�I

T
= 0, �11�

whose solution is

F��� � exp�−
I�2

�1 + ��T	 . �12�

By taking the second derivative, one obtains the differen-
tial equation

�1 + ��
d2F���

d�2 +
2I

T
�

dF���
d�

+
2I

T
F��� = 0, �13�

whose solution is also given by Eq. �12�.
The third-order expansion gives a polynomial in v�,

m3v�
3

I3 H3„F���… −
3m2v�

I2 H1„F���… = 0 �14�

where

H3„F���… = �1 + ��3d3F���
d�3 + 3�1 + ��2 I�

T

d2F���
d�2

+ 3
I

T
��1 + ��

I�2

T
+ 2	dF���

d�

+
2I2�

T2 �3�1 + �� +
I�2

T
	F��� �15�

and

H1„F���… = �1 + ���2 +
I�2

T
	dF���

d�

+
I�

T
��1 + �� + 2

I�2

T
	F��� . �16�

The solution of H3=0 is given by Eq. �12� again, but the
solution of H1=0 is

F��� � �2 +
I�2

T
	�1−��/�1+��

exp� − I�2

�1 + ��T	 . �17�

Although Eq. �17� is different from Eq. �12�, it is interest-
ing to note that this solution is the same Maxwellian times a
slowly decreasing function �if �=1, Eq. �17� is identical to
Eq. �12��. The fourth derivative of G�v� ,� ,�� has been cal-
culated with the software MAPLE, and the differential equa-
tion associated with the v�

3 term has a Maxwellian solution,
but the solution of the differential equations associated with
the v� term is given by the Maxwellian solution multiplied
by a slowly varying function. Therefore, we conjecture that
the complete solution is given by Eq. �12� times a subdomi-
nant term.

In order to check this assumption, we have solved numeri-
cally the Boltzmann equation. Since Eq. �8� is linear and the

distribution F��� is a one-variable function, we have used an
iterative method that is very efficient and provides a much
more accurate solution �18� than a Direct Simulation Monte
Carlo �DSMC� method �23,24�.

The procedure consists of iterating the following equa-
tion:

F�n+1���� = C��� � d�� dv�v�F�n��w + v
�1 + ��m�

I + m�2 	
	 
B��� + v

��m�2 − I�
I + m�2 	 , �18�

where

C��� = �� d�� dv�v − ���
B�v�	−1

. �19�

C��� is an explicit function when the bath particle distribu-
tion 
B�v� is Maxwellian. The velocity distribution is
sampled on a one-dimensional grid with 1000 points. The
integrations over � and � are performed with Simpson’s rule
with 100 and 1500 points, respectively. For off-grid veloci-
ties, a linear interpolation is performed. The initial distribu-
tion is taken as the Maxwellian Eq. �12�. Except when the
mass of the planar rotator is extremely small, the method
converges rapidly.

Figure 2�a� displays the �dimensionless� angular velocity
distribution F�� /�0� �where �0=
2T / I� for a mass ratio
M /m=10 for different values of the coefficient of restitution
�. The deviations from the Maxwellian distribution, shown
in Fig. 2�b�, increase with decreasing coefficient of restitu-
tion, but compared to the function F��� they vary weakly
with the angular velocity. The iterative method allows us to
obtain the tails of the distribution function with a higher
precision than is possible obtained with a method �conver-
gence occurs after few iterations when the mass ratio M /m is
large and 50 iterations when the mass is 0.01�. Figure 3
shows the angular velocity distributions for a mass ratio
equal to 1. The deviations from the Gaussian behavior are
more pronounced than those for a mass ratio of 10, but they
are still negligible compared to the leading Gaussian term.

IV. ZERO-MASS LIMIT

When both the mass of the needle and the coefficient of
restitution are equal to zero, the Boltzmann equation, Eq. �8�,
can be solved exactly �22�. Let us review the special charac-
teristics of this limiting case. First, because the tracer particle
has zero mass, the velocity of the bath particles never
changes as the result of a collision. In addition, the angular
velocity of the needle has no memory of its precollisional
value. This quantity is reset after each collision, acquiring
instantaneously the value v� /�. By introducing the variable
v�= ����y, Eq. �8� can be written as
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�
−L/2

L/2

d� �2� dy�y�F�w�1 + y
�1 + ��m�2

I + m�2 	�
	
B����1 + y

��m�2 − I�
I + m�2 	�

= F����
−L/2

L/2

d� �2� dy�y − 1�
B���y� . �20�

When I=0 and �=0, this simplifies to

�
−L/2

L/2

d� �2� dy�y�F„w�1 + y�…
B����

= F����
−L/2

L/2

d� �2� dy�y + 1�
B���y� . �21�

The exact solution F��� of Eq. �21� is obtained by integrat-

ing the bath distribution 
B���� weighted by the position �
of the point of impact:

F��� = �
−L/2

L/2

d��2�

L
	2


B���� . �22�

Note that this solution is independent of specific assump-
tions about the distribution of the bath particles. If we make
the weak assumption that the second moment of the distri-
bution 
B�v� is finite, i.e., that the bath is characterized by a
finite granular temperature, it can be shown that F��� decays
algebraically as �−3. The long tail of F��� arises from colli-
sions near the center of the rotator that result in large angular
velocities. It is worth noting that solutions of the Boltzmann
equation with power-law decay exist for isotropic particles,
but not with a thermalized bath of particles �25,26�.

While the granular temperature of the bath particles is
finite, that of the tracer is not well defined, since its zero
mass implies an infinite mean squared angular velocity. This
difficulty is removed when the granular particle has a small
but finite mass �see below�.
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FIG. 2. �Color online� �a� Log10-linear plot F�� /�0� for
M /m=10 and with different values of the coefficient of restitution
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FIG. 3. �Color online� Same as Fig. 2 for M /m=1.
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An explicit expression of the angular velocity distribution
function F��� can be obtained when the bath particles
have a Maxwellian velocity distribution 
B�v�
=
m /2�Texp�−mv2 /2T�. In this case

F��� = −
 1

�

�c

�2 exp�−
�2

�c
2	 +

�c
2

2�3 erf� �

�c
	 , �23�

where �c=
8T / �mL2� is the crossover frequency between
two regimes. For �
�c, F��� has a power-law behavior and
for ���c, F����exp�−3�2 / �5�c

2�� is Gaussian �see Fig.
4�. It is important to note that, when the power-law regime
begins, the amplitude of F��� has only decreased by an order
of magnitude compared to the maximum F�0�.

An obvious question is whether the behavior just de-
scribed persists when either � or M /m is different from zero.
Is the power-law regime sustained in these cases?

We first consider the case where the mass ratio is main-
tained at zero, but the coefficient of restitution is allowed to
take all values between 0 and 1. For �=1 �elastic collisions�,
the solution of the Boltzmann equation is the expected Max-
well distribution:

F��� =
 I

2�T
exp�−

I�2

2T
	 , �24�

but the limit I→0 does not yield a probability distribution.
For 0���1 and I=0, we were unable to obtain an ana-

lytical solution and we investigated the behavior numerically
with the method described above. Figure 5 shows the loga-
rithm of the distribution function versus the angular velocity.
As in the case �=0, two distinct regimes characterize F���:

a scaling regime for �
�c���, where �c��� is a cutoff that
increases with �, and a Gaussian behavior at low frequen-
cies.

Figure 5 shows that, in the power-law regime, while the
amplitude of F��� decreases when � increases, the exponent
of the power law is independent of �. It is possible to obtain
this result analytically by means of an asymptotic analysis of
the Boltzmann equation, Eq. �21�. Details of the calculation
are given in Appendix B. The final result, for M =0 and
0���1, is

F��� �
�1 + ���c

2

2�1 − ���3 . �25�

Unlike the case where �=0, here the rotator has a
memory of its previous angular velocity after a collision with
a bath particle, �*=��+ �1+��v� /�. This memory effect
can be very small when a bath particle collides near the
center of the rotator �small ��, which explains why, for large
angular velocities, the distribution function behaves similarly
to the case �=0.

The inset of Fig. 5 displays H���=F����mL2�1−�� /
4T�1+����3 versus �, showing that the asymptotic behavior
is rapidly reached and that the numerical results agree accu-
rately with Eq. �25�.

V. INTERMEDIATE CASES

We have considered in the preceding sections the two
limiting cases of a large mass of the planar rotator �Brownian
limit�, where the angular velocity distribution function dis-
plays a Gaussian-like behavior, and the zero-mass case
where, surprisingly, a solution of the Boltzmann equation
exists with a power-law decay of the distribution function. In
this section, we investigate the intermediate case that corre-
sponds to most physical situations.
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We consider a planar rotator with a small but finite mass
0�M �m. In Eq. �8�, since the integrand is an even func-
tion, integration can be restricted to positive values of �.
Moreover, the integral can be divided into two parts:

�
0

L/2

d� = �
0

�

d� + �
�

L/2

d� , �26�

where ��
I /m �but � being always small compared with
L /2�. For small angular velocities, the contribution of the
first integral vanishes, and by performing a first-order expan-
sion of the arguments of the integrand, one obtains

�
�

L/2

d� F„��1 + y�1 + ���…
B„��1 + �y�… , �27�

which leads to the Boltzmann equation of the massless par-
ticle when �→0.

Assigning a finite needle mass restores a finite granular
temperature. For small mass M, the angular distribution
function F��� behaves like the massless solution for
���c

�2�, i.e., a Gaussian for ���c followed by a power
law. For larger values of � another Gaussian begins. The
granular temperature Tn is given by the product of the mo-
ment of inertia times �2:

Tn =� d� F���I�2. �28�

The integral can be divided into three contributions: the low-
frequency range �0,�c�, the intermediate power-law regime
��c ,�c

�2��, and the quasi-Gaussian region for �
�c
�2�. Ne-

glecting the � dependence, the upper cutoff �c
�2���0.

Whereas the first and third contributions of the above inte-
gral remain finite when I decreases, the second contribution
increases. Therefore, the granular temperature is dominated
by the intermediate regime and is given by

Tn � 2�
�c

�0 d�

�
I�c

2 � I�c
2 ln��0

�c
	 � T

4I

mL2 ln�mL2

4I
	 ,

�29�

which means that the granular temperature of a planar rotator
goes to zero as its mass decreases �even if the quadratic
average of the angular velocity diverges logarithmically�.

Figure 6 shows the distribution function for three small
mass ratios M /m=0.005,0.01,0.1 with �=0. As expected,
the low-frequency distribution is well approximated by the
massless distribution function. The inset shows that the range
of the power-law decay decreases as the mass of the planar
rotator increases. For large angular velocities, the
distribution function resumes the Gaussian behavior,
F�w��exp�−I�2 / ��1+��T��, irrespective of the needle-to-
bath particle mass ratio.

In summary, the velocity distribution “remembers” the
massless solution up to the second crossover angular velocity
�c

�2���0. If the mass of the planar rotator is sufficiently
small, one observes three successive regimes: first, a Gauss-
ian decay, second a power law, and finally, a Gaussian-like
decay �subdominant terms are present�.

When the masses of the planar rotator and a bath particle
are comparable, the two crossover angular velocities merge
and the power-law regime disappears. However, F��� may
still deviate significantly from a Gaussian. In order to show
this we introduce the quantity

� =
��4�

3��2�2 − 1, �30�

which is zero for a Gaussian distribution. Figure 7 displays �
as a function of the coefficient of restitution � for different
masses M /m=0.1,1 ,2 ,10.
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FIG. 7. �Color online� Deviations of the angular velocity distri-
bution function from a Gaussian for M /m=0.1,1 ,2 ,10, top to
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VI. MODELS WITH FREE OR FIXED CENTER

The model of granular planar rotator with a free center in
a thermalized bath has been previously investigated by Viot
and Talbot �20�. In this model, the tracer particle has, in
addition to the rotational one, two translational degrees of
freedom.

By using an approximate theory, as well as numerical
simulations of the Boltzmann equation, it was shown that the
translational and rotational granular temperatures are both
smaller than the bath temperature, and also different from
each other. In addition, the translational and rotational de-
grees of freedom are correlated �27�.

In this section, we compare the rotational granular tem-
peratures for the two models, all parameters being the same
�mass ratio, coefficient of restitution, and bath temperature�.

In order to obtain an analytical expression for the rota-
tional temperature, we use a method originally proposed by
Zippelius and colleagues that consists of calculating the sec-
ond moment of the angular velocity of the Boltzmann equa-
tion �7,20,28�. In a stationary state, this quantity is constant,
and by using a Gaussian ansatz for F���,

F��� � exp�− I�2

2T̄
	 , �31�

one obtains a closed equation for the granular temperature T̄
as a function of microscopic quantities:

�
0

1

dx
T̄

T
x2


1 +
T̄

T
kx2

1 + kx2 =
1 + �

2
�

0

1

dx

x2�1 +
T̄

T
kx2	3/2

�1 + kx2�2 ,

�32�

where

k =
mL2

4I
. �33�

Details of the calculation are given in Appendix C. Equation

�32� is an implicit equation for T̄, but, for a given value of �
and of the mass ratio, it can be solved with standard numeri-
cal methods.

Figure 8 shows the variation of the rotational temperature
with the normal coefficient of restitution for a mass ratio of 1
for a fixed �solid curve� and free �dashed curve� planar rota-
tor. The temperature is always higher when the center is
fixed except in the case of elastic collisions, �=1. The
circles correspond to the “exact” temperatures obtained by
computing the second moment of the distribution function
F���, which shows that the above method provides accurate
approximate results for estimating the granular temperatures.

We also consider the variation of the granular temperature
with the mass ratio for a given value of the restitution coef-
ficient: See Fig. 9. It is easy to verify that in the Brownian
limit, i.e., when the mass of the rotator is much larger than
the particle mass, the granular temperature approaches
�1+�� /2, which is independent of the mass ratio and, prob-
ably, the shape of particle. As the mass of the needle de-
creases, the difference between the rotational temperatures of

the free and fixed planar rotator increases. For elastic sys-
tems, the rotational temperatures remain identical for the two
different situations �free or fixed center of mass�, but signifi-
cant differences occur for a granular particle.

This phenomenon is more pronounced with varying mass
ratio than with varying coefficient of restitution. Therefore,
by monitoring the rotational motion of a granular needle in a
bath of significantly heavier particles in two successive ex-
periments �free and fixed center of mass�, it should be pos-
sible to observe the absence of equipartition for a single par-
ticle.
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FIG. 8. �Color online� Effective granular temperature T̄ as a
function of the restitution of coefficient � for a fixed �full curve�
and free rotator �dashed curve� in a bath of point particles. Circles
correspond to the exact temperatures obtained by computing the
second moment of the distribution function obtained by the numeri-
cal resolution. The mass ratio is M /m=1.
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FIG. 9. �Color online� Effective granular temperature T̄ as a
function of the mass ratio M /m for a fixed �full curve� and free
rotator �dashed curve� in a bath of point particles. The coefficient of
restitution is �=0.9.

ANGULAR VELOCITY DISTRIBUTION OF A GRANULAR… PHYSICAL REVIEW E 75, 051307 �2007�

051307-7



VII. CONCLUSION

We have shown that the stationary angular velocity distri-
bution of a planar rotator with a fixed center that collides
inelastically with particles in a thermalized bath displays a
variety of behavior as the mass of the rotator is changed.
Starting from a quasi-Gaussian regime when the rotator is
much heavier than the bath particle, F��� shows significant
deviations from the Gaussian when the mass of the rotator is
comparable to that of a bath particle. As the rotator mass
decreases further, an intermediate power regime also ap-
pears.

We believe that these features are not specific to this
simple model, but are generic for all granular systems con-
taining nonspherical particles. Furthermore, we expect that
the non-Gaussian character that is present in the idealized
configuration of a thermalized bath will be amplified in the
presence of a granular �nonthermal� bath. Several experi-
ments on intensely vibrated granular systems using high-
speed photography �5,29�, image analysis, and particle track-
ing �4,30� have shown that many quantities, including
granular temperature and velocity profiles, can be precisely
measured. As recent experimental studies have demon-
strated, some of the same techniques can also be applied to
granular rods �31–35�. We believe that the significant differ-
ence between the granular temperatures of a free and fixed
rotator that we have identified �Fig. 9� should be detectable
using available experimental methods.
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APPENDIX A: DIMENSIONLESS BOLTZMANN
EQUATION

In order to consider the Brownian motion regime, it is
convenient to introduce dimensionless variables �
=
I /kBT� and u�=
m /kBTv�.

In terms of these variables the integrand in the Boltzmann
equation �8� takes the form

F�� + u�

�1 + ���
1 + �2 	
B��� + u�

��2 − 1

1 + �2 	
− F���
B�u� + ��� , �A1�

where �=
m�2 / I=
12m /M� /L.
It is thus clear by inspection that the expansion of the

dimensionless collision term �A1� in powers of � is equiva-
lent to the expansion of the collision term �8� in powers of �.
Notice that keeping the variable � fixed when exploring the
region of m�M corresponds to the Brownian motion as-
ymptotics, as then the rotational energy I�2 is maintained at
a fixed ratio with the thermal energy kBT.

APPENDIX B: ASYMPTOTIC BEHAVIOR OF THE
ANGULAR VELOCITY DISTRIBUTION IN THE ZERO-

MASS LIMIT

Performing the change of variable u=��y+1� in the left-
hand side of Eq. �20� and u=�y in the right-hand side, one
obtains

�
−L/2

L/2

d� �2� du�u − ��F„�1 + ��u − ��…


B��„�1 − ��� + �u…� = F����
−L/2

L/2

d� �2� du�u − ��
B��u� .

�B1�

When ���→�, one has

� du�u − ��
B��u� �
���
�

, �B2�

and therefore the right-hand side of Eq. �B1� becomes

F����L

2
	2

��� . �B3�

Performing a similar analysis for the right-hand side of Eq.
�B1�, one gets the asymptotic relation of the Boltzmann
equation �for the zero-mass limit�,

F����L

2
	2

= �
−L/2

L/2

d� �2� du F„�1 + ��u − ��…

	 
B��„�1 − ��� + �u…� . �B4�

Let us introduce the Fourier transforms of the distribution

functions F��� and 
B�u� �with the convention F̂�k�
=�d� F���e−ikr�. The right-hand-side of Eq. �B4� can be ex-
pressed as

� dk

2�
� dq

2�
�

−L/2

L/2

d� �2F̂�k�
̂B�q�

	� du eik��1+��u−���eiq���1−���+�u�. �B5�

By using the property �dx eiax=2���a�, integration over v in
Eq. �B5� can be carried out, and one obtains

� dq

2�
�

−L/2

L/2

d� �2F̂� ��q

1 + �
	 
̂B�q�

1 + �
ei���q/�1+���. �B6�

By taking the Fourier transform of Eq. �B4� and by using Eq.
�B6�, the asymptotic form of the Boltzmann equation be-
comes

F̂�k��L

2
	2

= F̂��k��
−L/2

L/2

d����
̂B�1 + �

�
q	 . �B7�

The integral of the right-hand side of Eq. �B7� can explicitly
performed:
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�
−L/2

L/2

d����
̂B�1 + �

�
q	

= �
0

1

d� exp�− 2
�1 + ��2k2T

�mL2 	
= exp�− 2

�1 + ��2k2T

mL2 	
	− 2

�1 + ��2k2T

mL2 Ei�1,2
�1 + ��2k2T

mL2 	 , �B8�

where Ei�1,x� is the exponential integral. For small values of
k, Eq. �B8� behaves as

�
−L/2

L/2

d� �
̂B�1 + �

�
q	 � 1 + 4

�1 + ��2T

mL2 k2 ln��k�� .

�B9�

Inserting Eq. �B9� in Eq. �B7� yields

F̂�k��L

2
	2

= F̂��k��1 + 4
�1 + ��2T

mL2 k2 ln��k��	 . �B10�

Iterating Eq. �B10� and by using that F̂�k�=1, one obtains
that

F̂�k� = 1 +
1 + �

1 − �

4T

mL2k2 ln��k�� . �B11�

The inverse Fourier transform of Eq. �B11� leads to Eq. �25�.

APPENDIX C: GRANULAR ROTATIONAL
TEMPERATURE OF THE PLANAR ROTATOR WITH A

GAUSSIAN APPROXIMATION

By taking the second moment of Eq. �7�, one obtains the
following equation:

�
−L/2

L/2

d�� v� d� ���� − v��v − ���F���
B�v���2 = 0,

�C1�

where ��2=�*2−�2. This equation means that for a station-
ary state the second moment of the distribution is time inde-

pendent, or, in other words, that the loss of the rotational
energy of the planar rotator induced by inelastic collisions is
compensated on average by collisions with bath particles
with higher velocities.

By using Eq. �6�, the difference between the square angu-
lar velocities at a collision is given by

��2 = − ��1 + ��
V · u���* + ��

I/m + �2 = − 2��1 + ��
V · u��

I/m + �2

+ �2�1 + ��2 �V · u��2

�I/m + �2�2 . �C2�

We introduce the dimensionless vectors

s = �sx,sy� = �
 m

2T
v,
 I

2T̄
�	 �C3�

and

G = �Gx,Gy� = �
2T

m
,
2T̄

I
�	 �C4�

Therefore the scalar product G ·s gives

G · s = v − �� . �C5�

Equation �C1� can be expressed as

�
−L/2

L/2

d�� ds exp�− s2���− G · s��G · s�

	
−
2��1 + ��G · s

I/m + �2

2T̄

I
sy +

�2�1 + ��2�G · s�2

�I/m + �2�2 � = 0.

�C6�

Let us define a new coordinate system �28� where the y axis
is parallel to G: unit vectors are denoted �e1 ,e2� whereas the
unit vectors of the original system were �ex ,ey�. It follows
that G= �G �e1 and therefore one can write that

Ge1ey = �G�ex = Gx. �C7�

Inserting Eq. �C7� in Eq. �C6� allows for performing stan-
dard Gaussian integrals and finally one obtains Eq. �32�
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